652 research outputs found

    QuLa: service selection and forwarding table population in service-centric networking using real-life topologies

    Get PDF
    The amount of services located in the network has drastically increased over the last decade which is why more and more datacenters are located at the network edge, closer to the users. In the current Internet it is up to the client to select a destination using a resolution service (Domain Name System, Content Delivery Networks ...). In the last few years, research on Information-Centric Networking (ICN) suggests to put this selection responsibility at the network components; routers find the closest copy of a content object using the content name as input. We extend the principle of ICN to services; service routers forward requests to service instances located in datacenters spread across the network edge. To solve this problem, we first present a service selection algorithm based on both server and network metrics. Next, we describe a method to reduce the state required in service routers while minimizing the performance loss caused by this data reduction. Simulation results based on real-life networks show that we are able to find a near-optimal load distribution with only minimal state required in the service routers

    On-demand provisioning of long-tail services in distributed clouds

    Get PDF

    Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes

    Get PDF
    Recurrent neural networks are nowadays successfully used in an abundance of applications, going from text, speech and image processing to recommender systems. Backpropagation through time is the algorithm that is commonly used to train these networks on specific tasks. Many deep learning frameworks have their own implementation of training and sampling procedures for recurrent neural networks, while there are in fact multiple other possibilities to choose from and other parameters to tune. In existing literature this is very often overlooked or ignored. In this paper we therefore give an overview of possible training and sampling schemes for character-level recurrent neural networks to solve the task of predicting the next token in a given sequence. We test these different schemes on a variety of datasets, neural network architectures and parameter settings, and formulate a number of take-home recommendations. The choice of training and sampling scheme turns out to be subject to a number of trade-offs, such as training stability, sampling time, model performance and implementation effort, but is largely independent of the data. Perhaps the most surprising result is that transferring hidden states for correctly initializing the model on subsequences often leads to unstable training behavior depending on the dataset.Comment: 23 pages, 11 figures, 4 table

    Semantics-driven event clustering in Twitter feeds

    Get PDF
    Detecting events using social media such as Twitter has many useful applications in real-life situations. Many algorithms which all use different information sources - either textual, temporal, geographic or community features - have been developed to achieve this task. Semantic information is often added at the end of the event detection to classify events into semantic topics. But semantic information can also be used to drive the actual event detection, which is less covered by academic research. We therefore supplemented an existing baseline event clustering algorithm with semantic information about the tweets in order to improve its performance. This paper lays out the details of the semantics-driven event clustering algorithms developed, discusses a novel method to aid in the creation of a ground truth for event detection purposes, and analyses how well the algorithms improve over baseline. We find that assigning semantic information to every individual tweet results in just a worse performance in F1 measure compared to baseline. If however semantics are assigned on a coarser, hashtag level the improvement over baseline is substantial and significant in both precision and recall

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations

    Full text link
    In this work we explore the generalization characteristics of unsupervised representation learning by leveraging disentangled VAE's to learn a useful latent space on a set of relational reasoning problems derived from Raven Progressive Matrices. We show that the latent representations, learned by unsupervised training using the right objective function, significantly outperform the same architectures trained with purely supervised learning, especially when it comes to generalization
    corecore